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Abstract

Spatial development of small amplitude disturbances in plane Poiseuille flow is investigated numerically using a
commercial CFD code (CFX 4.2). Small amplitude Tollmien—Schlichting (TS) waves known from an Orr-Sommerfeld
analysis are superimposed as initial conditions on a fully developed laminar channel flow. The downstream spatial
disturbances are calculated on the basis of the full Navier-Stokes equations (NSE). Results are compared to calcu-
lations based on the Orr—Sommerfeld equations (OSE). In a second step the thermal energy equation is solved in
addition to the NSE to investigate the temperature effects and especially the development of temperature disturbances.
A certain delay in the development of these disturbances is found which is due to a thermal receptivity mechanism.
These results again are compared to OSE calculations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The laminar-turbulent transition process is often
initiated by an amplification of small disturbances. The
small disturbance linear stability theory, based on the
famous Orr—Sommerfeld equation (OSE), is a math-
ematical tool for analysing the initial stage of the tran-
sition process. It provides certain stability criteria in
terms of threshold values of the Reynolds number and
amplification rates for the disturbances. According to
these criteria the flow is unstable if the amplification is
positive, which may occur if the Reynolds number ex-
ceeds a critical value Re.. For plane Poiseuille flow the
critical Reynolds number based on half the channel
height A* = H*/2 and the centreline velocity U is
Re. = Uth* [v* = 5772.

In the Orr-Sommerfeld theory a parallel flow is as-
sumed, i.e., changes of the disturbance amplitude func-
tions and of the mean flow in the downstream direction
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are neglected. Thus the theory provides a local analysis,
i.e., the flow history or upstream effects from an outflow
boundary are not included.

Since this theory is only a first step in the direction of
a complete analysis there have been many extensions of
the OSE-theory during the last decades. In today’s
stability investigations non-parallel as well as non-linear
or variable property effects are points of particular in-
terest (see [1] or [2] for a review).

With all these effects included in the mathematical
models (which are all deduced from the Navier—Stokes
equations (NSE)) one gets closer and closer to the full
equations. With the fast development of computer
technology the trend will be to solve the NSE themselves
even for the analysis of flow stability characteristics.
Though this sounds like a progress per se, one should
always keep in mind that deducing mathematical models
from the full NSE goes hand in hand with an under-
standing of the physics of the problem. This, however,
might get lost by attacking the full equations.

From these considerations we conclude that in the
future stability analysis may be routinely based on the
full NSE, that, however, a critical interpretation based
on physical considerations is absolutely necessary.
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Nomenclature

a* physical quantity
A amplitude

B* body force

c specific heat

h, H* channel height
n*, H* enthalpy, total enthalpy

Lr length

P pressure

Pr Prandtl number

Re Reynolds number

S source term

t* time

T temperature

u*, v* velocity components
U velocity vector
x*,y*,z* Cartesian coordinates

Greek symbols

a stability parameter
i thermal conductivity

*

u dynamic viscosity

v kinematic viscosity

p* density

o stress tensor

(2] dimensionless
temperature

) dimensionless frequency

Subscripts

C critical value, centreline,
computation domain

i imaginary part

r real part

v v-velocity

T temperature

Superscripts

dimensional quantity
disturbance quantity,
derivative

mean flow quantity
complex quantity

!/

In our study, we want to find out to what extent
commercial CFD codes can be used today already for a
direct numerical simulation (DNS) of flow stability
characteristics. Plane Poiseuille flow is a “good candi-
date” since its mean flow is a parallel flow. Moreover,
the analytical parabolic velocity profile is an exact
solution of the full NSE. Thus the Orr—Sommerfeld
analysis, which we want to use as a reference theory, is
an exact description of the linear stability behaviour of
(exponentially) small disturbances.

In previous studies like those by Fasel and Bestek [3]
or Chung et al. [4] the stability of plane Poiseuille flow was
analysed by DNS codes especially developed for these
purposes. Instead, we want to use the commercial CFD
code CFX 4.2 by the AEA Technology to investigate the
stability of a channel flow. Our special interest is focused
on grid dependence, computing time and accuracy.

Since a spatial simulation of the problem under in-
vestigation needs a great amount of computer recourses
most studies have been performed in terms of a temporal
simulation with periodic boundary conditions in the
mean flow direction. The computation domain then only
has to be a multiple of the wavelength of the investigated
TS wave. In the unstable parameter domain the nu-
merical errors, always present in the calculations, will
automatically lead to an amplified disturbance and fi-
nally to self-sustained oscillations [5]. For non-periodic
flows, however, this method is not applicable. Such flows
must be investigated using a spatial mode analysis. In
what follows we therefore analyse the spatial develop-
ment of Tollmien—Schlichting (TS) waves.

2. Numerical models
2.1. NSE model

The basic setup of the problem is relatively simple
and a sketch of it is shown in Fig. 1. Our computational
domain is the rectangle A-B-C-D. We assume the flow
to be fully developed, two-dimensional and incom-
pressible. The basic equations solved by the program
CFX 4.2 are the well-known conservation equations for
mass, momentum and, in the non-isothermal case, en-
ergy (see the CFX manual for details)
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Fig. 1. Sketch of the channel flow and the computation domain
for the NSE calculation.
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Here U* is the velocity vector, p* the pressure, T* the
temperature, ¢* the time, p* the density, A" the thermal
conductivity and H* the total enthalpy H* = h* + U2 /2.
The stress tensor is ¢* = —p*d + u*(V*U* + (V:U*)")
with the molecular viscosity y*. In Eq. (2) B* is a body
force.

The boundary conditions are no slip at the lower
and upper walls. The inflow boundary condition at
A-D is the fully developed velocity profile. Since there
are no special boundary conditions for the outflow
boundary in CFX 4.2 to provide an unhindered pas-
sage of the outgoing disturbance waves we decided to
use the so-called “MASS FLOW BOUNDARY” con-
dition. For the problem under consideration this
boundary condition is similar to assuming a fully de-
veloped flow at the exit B-C, which, however, will lead
to a reflection of the outgoing waves and a superposi-
tion of the reflected and outgoing disturbances. This is
a crucial point of the investigation and will be discussed
later.

In the present study, the disturbances were intro-
duced at some location downstream of the inflow
boundary, on the “disturbance patch” (x*=xj).
Therefore, first the Orr—Sommerfeld solution for a given
disturbance frequency and Reynolds number was cal-
culated to get the amplitude functions of the v* and u"-
components of the disturbance (see next paragraph).
Then the two-dimensional TS wave (only the v*'-com-
ponent)

V(" = xg,, )", 1) = 4 Real (ﬁ* exp(— iw*t*)) (4)

was superimposed on the laminar parabolic velocity
profile. Here, A4 is the amplitude of the TS wave, ¢* the
dimensional amplitude function calculated from the
OSE and o* the corresponding frequency. Since CFX
4.2 does not provide direct access to the velocity field
during the iteration process we had to model the dis-
turbances on the disturbance patch by using source
terms. This procedure is described in detail in the CFX
manual. It is based on the fact that in the linearised form
all transport equations can be written as

convection — diffusion = sources. (5)

For example, the source term for the v* component in
the momentum equation then reads

S' = Asin(o't) Real(ﬁ*(y*)). (6)

CFX 4.2 provides many performance parameters like
the choice of a differencing scheme, number of inner/
outer iterations, pressure coupling algorithm (SIMPLE/
SIMPLEC) and many more. The default parameter

settings were used in all our calculations, except for the
differencing scheme, where quadratic upwind differ-
encing (QUICK) instead of hybrid differencing was
used.

Though the equations are given in a dimensional
form they can be treated like non-dimensional equations
by a special choice of the length (H* = 1 m), the density
(p* = 1 kg/m’) and the viscosity (u* = 10~* kg/ms; 10~
is preferred to 1 in order to get numbers of order one in
the results). Thus they are only formally like dimen-
sional equations.

During some test calculations the results were found
to be very sensitive to time step variations. Finally,
At* = 0.01 s was taken as the choice for the best accu-
racy. Simple rectangular equidistant grids of size
1001 x 51 to 2501 x 121 were tested depending on the
geometrical size of the channel (L*=25m/35m,
H* =2h* =1 m). More details will be given in the re-
sults and discussion part below.

2.2. OSE model

Solutions of the OSE serve as reference solutions.
The OSE can easily be deduced from the full NSE by
decomposing all flow quantities into a mean part a*(y*)
and a disturbance part a*(x*,y*,*). Assuming the dis-
turbance part to be of the wave-like form (spatial
analysis)

a’(x*,y", 1) = a*(y") exp(id’x" — iw*t*) + c.c. (7)
and non-dimensionalising all quantities with respect to

half the channel height #* = H*/2 and the centreline
velocity U} we get the OSE in u — v form

i+ =0, (8)

N S L v SV

(G — iw)[d' —iad] + u"d + e (u’” — &% — g + 1a3v>
e

=0. 9)

For the non-isothermal case the disturbance thermal
energy equation is deduced likewise from the full energy
equation

1

RePr(@” —#0)=0. (10)

(idit — i0)O + 06 —

Here Re = p*Ulh*/u* is the Reynolds number, Pr=
we, /2° the Prandtl number with the heat capacity Cpe
For our investigation two different flow situations
shown in Fig. 2 were chosen as test cases. One is a
subcritical case with Re = 5000; the second is a super-
critical flow with Re = 10000. In the subcritical case the
frequency is w = w*h*/U; = 0.3302, and in the super-
critical case it is = 0.2375. The corresponding complex
eigenvalues from the OSE calculation are & = a*h* =
1.1557 +10.0106 (subcritical case) and & = 1.0006—
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Fig. 2. Neutral curve for the channel flow (OSE solutions).

10.0109 (supercritical case). The amplitude functions for
these eigenvalues are also depicted in Fig. 2.

The programme for solving the OSE is based on a
Chebyshev collocation approach combined with a reg-
ular false method for finding the eigenvalues (for details
see [6]).

3. Results and discussion

In the present study, we considered the two-dimen-
sional laminar channel flow between two plates located
at y* =0 and y* = H*. At a distance of x* = 1.52H*
from the inflow boundary a disturbance of the form (4)
was introduced. The computation domain is of length
25H*.

Fig. 3(a) shows a comparison between the NSE and
OSE calculations for case 1 (see Fig. 2) (grid resolution:
1801 x 81). The development of the v-component of the
disturbance at the centreline in the downstream direc-
tion is shown. Due to the fact that the outgoing dis-
turbances are reflected at the outflow boundary a wave
emerges that has got a slightly different wavelength
compared to the original OSE result: o, nsg = 1.2 instead
of o, osg = 1.1557. Next, a recalculation of the OSE was
made with exactly the NSE wavelength o, = 1.2 in order
to compare this to the original NSE result. A nearly
perfect correspondence of both results is now reached,
see Fig. 3(b). However, one should keep in mind that
NSE results only match the OSE case which is shifted in
wavelength (from 1.1557 to 1.2). Thus, the wavelength

correspondence is enforced. The amplification rate,
however, could be different (which it is not due to a good
correspondence between NSE and OSE). The compu-
tation domain for these calculations was L} = 25H".

The corresponding amplitude functions are depicted
in Fig. 4. The amplitude functions shown in this figure
are normalised to one at their maximum. The remaining
difference in the amplitude functions «’ is very small and
for an increasing resolution it will go to zero.

The shift in wavelength of the disturbance due to
reflection of the outgoing wave is a crucial point in this
study. If only one would look at the downstream de-
veloping wave without considering the origin of it the
results are perfect. Then we have an excellent agreement
of the NSE solution with the OSE results. However, the
mechanism that transforms the time periodic wave of
the source into a spatial developing wave is different in
the OSE, because the OSE does not take into account an
upstream effect of the outflow boundary condition. In
particular there is no outflow boundary in the OSE
model. Hence our task is to adjust the NSE model to the
OSE model and especially to avoid the reflection of the
outgoing waves in the NSE model. Therefore, we in-
troduced the so-called buffer domain in our NSE model
(see [4] for this idea and more details).

In this buffer domain the governing equations are
modified to enforce strictly outgoing waves. To avoid
reflections the streamwise viscous terms must be set to
zero. However, an ill-posed problem then causes a
breakdown of the solver in CFX 4.2 so that very small
but non-zero values were taken to avoid this breakdown.



J. Severin et al. | International Journal of Heat and Mass Transfer 44 (2001) 4359-4367

4363

T T T

Z__ NSE solution {1651 x 81}

---- OSE solution (1.1557 + i0.0106)

0.0001

-0.0001

20
=/ H*

| ---- OSE solution (12 +10.01713)

"NSE solution (1651 x81)

4 6 8 10
(a)
0 a2,y = HY/2)
0.0001
0
-0.0001
4 6 8 10
(b)
Fig' 3 v;’ax

Due to the large computation time for only one simu-
lation an optimisation of the geometric size of the buffer
domain was out of reach. Its size was set to L;, = 10H* as
shown in Fig. 1. For the calculations with buffer domain
the computation domain was then extended to
L: = 35H".

The results in Fig. 5 show for case 2 (see Fig. 2) that
the reflection of outgoing waves can be avoided by this
procedure, like it had been demonstrated by Chung et al.
[4] already. Since they, however, used their own code we
thought it is worth to show that introducing a buffer
domain really solves the problem, even in a “‘general
purpose code” which is not at all tuned for solving
stability problems.

NSE solutions for two different grid resolutions are
compared to the corresponding OSE solution. Since for

12 20

x*/H*

at the centreline; comparison of OSE and NSE solutions for two different grid resolutions: (a) 1001 x 61; (b) 1651 x 81.

these calculations a buffer domain was introduced the
time periodic wave of the source was correctly trans-
formed to a spatial disturbance. The corresponding OSE
solution (case 2: & = 1.0006 +10.0109) shows a good
agreement with the NSE solution with respect to the
wavelength. The growth rate, however, still is too low.
Obviously the grid resolution is insufficient, which is
shown in Fig. 6. Here the amplitude after approximately
six wavelengths (see Fig. 5 for the corresponding insert)
is shown as a function of 1/N, with N, being the number
of grid points in the x*-direction. Assuming the error
(deviation of NSE solution from OSE results) to be
proportional to 1/N, there is a nearly perfect corre-
spondence of the OSE solution with the NSE solutions
for N, — oco. For the resolution 2201 x 91 the growth
rate is approximately o; = 0.0005 (OSE: 0.0109).
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Fig. 5. v¥ _at the centreline: comparison of NSE solutions (with buffer domain) with the corresponding OSE solution.

max

In the buffer domain (small streamwise viscous terms)
unphysical results arise due to the manipulation of the
equations. An example is given in the grey shaded inset
in Fig. 5.

All calculations were performed on a HP 9000/889
K460 workstation cluster. A typical number of 300

time steps, each of it with four iterations and 500 s
of CPU time (grid resolution: 2001 x 81) thus took
approximately 40 h of total CPU time. Since com-
puters with these specifications are often multi-
user devices such calculations may last for days or
weeks.
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3.1. Temperature disturbances

Among all studies about flow stability only very few
address the problem of additional heat transfer and its
effect on flow stability. This effect, however, can be large.
For example, Wazzan [7] found that the critical Rey-
nolds number of a flat plate boundary layer in water
under the effect of heat transfer varies between 520 and
16 000.

Physically, heat transfer affects flow stability through
the temperature dependence of the properties p*, u*, A*
and ¢, (density, viscosity, thermal conductivity and
specific heat). Two major effects lead to changes in the
stability characteristic of a fluid: one is the action of the
mean temperature field and the second is the effect of
temperature fluctuations. The latter one gave rise to
controversial discussion in the past. Some studies simply
neglected the temperature fluctuations, like Wazzan
et al. [7] for a flat plate flow or Potter and Graber [§8] for
the plane Poiseuille flow. Others, like the study of
Schifer and Herwig [9], for example, used the so-called
shape assumption to investigate the effect of temperature
disturbances, i.e., they assumed the temperature dis-
turbances to be of the same form as the velocity dis-
turbances. This is a good approximation as long as the
stability is only of interest in the fully developed region,
where the temperature disturbances already are fully
developed in size and form. Due to the passive character
of the temperature disturbances (they are initiated by
velocity fluctuations) a certain time or length, however,
is necessary for the development to their final form and
size.

An investigation of Herwig and You [10] showed that
the shape assumption is a useful approximation and that
the delay in the development of temperature dis-

turbances (thermal receptivity) is negligible for most
stability considerations.

With the development of temperature fluctuations in
mind we address two major questions: (1) Is it possible
to get accurate results for the temperature disturbances
with the commercial code CFX 4.2? (2) Can we observe
the thermal receptivity mechanism described by Herwig
and You [10] also in our spatial stability analysis?

In Fig. 7 the development of the amplitude of the
temperature disturbance in the downstream direction is
shown for a Prandtl number of Pr = 0.7. The grey sha-
ded inserts show a typical downstream travelling wave
of the temperature disturbance and the corresponding
v-velocity disturbance at y* = H*/2. The results were
calculated without a buffer domain (for a comparison
see Fig. 3(b)). In agreement with the findings of Herwig
and You [10] for their time mode analysis the tempera-
ture disturbance starts at the disturbance patch with
zero amplitude and then grows while travelling down-
stream. After an overshoot a small adjustment zone
follows before it reaches its final state after approxi-
mately four wavelengths comparing well with the OSE
results based on the shape assumption.

In Fig. 8 disturbance amplitude functions from the
NSE calculations are compared to the OSE result,
which, according to the shape assumption, is the final
form of the temperature disturbance amplitude function.
The NSE calculations show a good agreement with the
OSE result. From the beginning (x* = 6.0H*) the shape
functions are close together. Near the centre of the
channel the final shape (OSE result) is not reached
within the calculated distance downstream. Together
with Fig. 7 these results show that for temperature dis-
turbances the size as well as the approximate shape is
attained very fast (2-3 wavelengths).
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4. Conclusions

From our numerical calculations based on the com-
mercial CFD code CFX 4.2 we conclude that flow
stability can be analysed without major modifications in
the code.

However, special attention must be given to the
adequate grid resolution as well as to the problem of
reflecting waves.

Even with high-performance computers CPU times
are very high. Though we are certainly still far away

from replacing flow stability considerations based on
special stability equations (derived from the NSE) by
solving the NSE themselves, increasing computer per-
formance can make this alternative more and more at-
tractive in the future.
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